Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that beta-L-ODAP is a selective non-NMDA agonist.

نویسندگان

  • R J Bridges
  • D R Stevens
  • J S Kahle
  • P B Nunn
  • M Kadri
  • C W Cotman
چکیده

Excitatory amino acids and their receptors play an important role in both normal synaptic transmission and excitotoxic-mediated neuronal death. In the present investigation we have prepared a series of glutamate analogs and examined the pharmacological specificity with which they interact with excitatory amino acid receptors. Included within this group of compounds is a potent excitotoxic amino acid, beta-N-oxalyl-L-alpha, beta-diaminopropionic acid (beta-L-ODAP). This excitotoxin is of particular interest because it has been identified as a major causative agent of human neurolathyrism, a disease characterized by permanent spastic paralysis. The site of action of beta-L-ODAP was delineated with both electrophysiological recordings in hippocampal slices and radioligand binding assays in synaptic plasma membranes. We report that beta-L-ODAP is a potent agonist at the non-N-methyl-D-aspartate (NMDA) type of excitatory amino acid receptor. beta-L-ODAP interacts most potently with the quisqualate class of non-NMDA receptors (IC50 = 1.3 microM), less potently with the kainate receptor (IC50 = 17 microM), and very weakly with NMDA receptors. The specificity of this binding was consistent with physiological experiments that demonstrated that beta-L-ODAP-induced depolarizations were potently blocked by the newly identified non-NMDA receptor antagonist, CNQX, but were not affected by the NMDA antagonist D-AP5. These results extend recent studies that have focused on the contribution of NMDA receptors to excitotoxicity and highlight the potential involvement of non-NMDA receptors in excitotoxic-mediated cell death.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neuroactive and other free amino acids in seed and young plants of Panax ginseng.

The seeds and one to three years old plants of Asian ginseng (Panax ginseng C.A. Meyer) were analyzed for their free amino acid contents. The neuro-excitatory beta-ODAP (beta-N-oxalyl-L-alpha,beta-diaminopropionic acid), suggested to be the cause of the crippling neurolathyrism, was the major component in the seed extract (70% of the total free amino acids detected) and showed the highest conce...

متن کامل

Structure-activity relationships for amino acid transmitter candidates acting at N-methyl-D-aspartate and quisqualate receptors.

Dose-response curves for activation of excitatory amino acid receptors on mouse embryonic hippocampal neurons in culture were recorded for 15 excitatory amino acids, including the L-isomers of glutamate, aspartate, and a family of endogenous sulfur amino acids. In the presence of 3 microM glycine, with no extracellular Mg, micromolar concentrations of 11 of these amino acids produced selective ...

متن کامل

Excitatory synaptic drive for swimming mediated by amino acid receptors in the lamprey.

In order to investigate the properties and pharmacology of the excitatory synaptic drive received by motoneurons during swimming in the lamprey, propriospinal excitatory interneurons were activated as a population by the regional application of N-methyl-D,L-aspartate (NMA) to either the 6-8 rostral-most or the 6-8 caudal-most segments of lengths of isolated spinal cord. This caused a rhythmic m...

متن کامل

Excitatory amino acid-induced release of 3H-GABA from cultured mouse cerebral cortex interneurons.

A newly developed continuous superfusion model was used for studies of 3H-GABA release from cultured mouse cerebral cortex neurons. It was found that a series of excitatory amino acids (EAAs) representing all receptor subtypes evoked Ca2+- dependent release of 3H-GABA from the neurons. Quisqualate was the most potent agonist tested, with an EC50 value of 75 nM. L-Glutamate, N-methyl-D-aspartate...

متن کامل

The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury.

The contribution of excitatory amino acids (EAAs) to the development of central sensitization and persistent nociception in response to tissue injury in rats was examined following the subcutaneous injection of formalin into the hindpaw. Formalin-induced nociceptive behaviors were enhanced by intrathecal pretreatment with the EAAs L-glutamate and L-aspartate. An enhancement of the formalin noci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 1989